Tank Factors

- Cubic Footage Per 100psi in a set of doubles/sidemount
- Used to convert between volume and pressure in Imperial
- Unnecessary in Metric

Rated Volume / Rated Pressure X $100 \times 2=$ Tank Factor

	Key
TF	Tank Factor
V	Volume
P	Pressure

Rated Volume/Rated Pressure - Gives us the number of cubic feet per single psi
X100 - Because our gauges don't read single psi, they read in 100s
X2 - Because we have two tanks in our unified gas supply
$(\mathrm{RV} / \mathrm{RP}) \times 100 \times 2=\mathrm{TF}$

Common Tank Factors	
AL80	5
LP85/HP100	6
LP95/HP120	7
LP104/HP130	8

Applying Tank Factors

- Converting Pressure to Volume

$$
V=P / 100 \times T F
$$

- Converting Volume to Pressure
- 100 is used as a conversion figure (for hundreds of psi)
$P=V / T F X 100$

Volume from Pressure

$\mathrm{V}=\mathrm{P} / 100 \mathrm{XTF}$
EXAMPLE: We have used 700psi in a set of double 80s; how much volume is this?

$$
700 \mathrm{psi} / 100=7
$$

$7 \mathrm{X} 5(\mathrm{TF})=35 \mathrm{cf}$
$700 / 100 \times 5=\mathrm{V}=35$

Pressure from Volume
$\mathrm{P}=\mathrm{V} / \mathrm{TF} \times 100$
EXAMPLE: To gas match we need to determine the pressure of 40cf in a set of AL80s
$40 \mathrm{cf} / 5$ (TF) $=8$
$8 \times 100=800$ psi
$40 / 5 \times 100=P=800$

Breathing Intervals

- 5 minute blocks of gas consumption
- Practical way of gas planning / estimating usage
- Measured in PSI/BAR
- Dependant on

Depth in ATA

$33^{\prime} / 10 \mathrm{M}$	2
$66^{\prime} / 20 \mathrm{M}$	3
$99^{\prime} / 30 \mathrm{M}$	4

Personal SAC rate

Tanks being used

- SAC rate should be known (can default to $.75 \mathrm{cf} / \mathrm{m}-20 \mathrm{~L} / \mathrm{m}$)
- Can be written down or memorised and applied to any dive (using applicable tanks)

EXAMPLE: Diver with a SAC rate of $.5 \mathrm{cf} / \mathrm{m}$ uses double AL80s. What are their Intervals?

1: Calculate RMV adjusted for depth
Multiply SAC by depth in ATA

Depth (In ATA)	RMV
$\mathbf{1}$ (Surface)	$.5 \mathrm{cf} / \mathrm{m}(\mathrm{SAC})$
$\mathbf{2}$	1
$\mathbf{3}$	1.5
$\mathbf{4}$	2

2: Convert cf / m to $\mathrm{psi} / \mathrm{min}$ using tank factor $\mathrm{P}=\mathrm{V} / \mathrm{TF} \times 100$ $\mathrm{P}=1(\mathrm{cf} / \mathrm{m}$ at 2ATA) $/ 5(\mathrm{TF})=.2$ $2 \times 100=20 \mathrm{psi} / \mathrm{min}$
Complete the rest of the table

Depth (In ATA)	RMV	PSI/min
$\mathbf{1}$ (Surface)	$.5 \mathrm{cf} / \mathrm{m} \mathrm{(SAC)}$	10
$\mathbf{2}$	1	20
$\mathbf{3}$	1.5	30
$\mathbf{4}$	2	40

3: Multiply PSI/min by 5
20 psi is a useless measurement and no one checks pressure every minute

Depth (In ATA)		RMV	PSI/min
$\mathbf{P S I}$ (Surface)	$.5 \mathrm{cf} / \mathrm{m}(\mathrm{SAC})$	10	50
$\mathbf{2}$	1	20	100
$\mathbf{3}$	1.5	30	150
$\mathbf{4}$	2	40	200

4: Eliminate extraneous information from table Ignore surface row and middle columns Change "Depth" header to local units Change "PSI/5 minutes" header to "Interval"

5: Write this down in wetnotes
6: Remember this is personal and for specific tank size

Depth	Interval
$\mathbf{3 3}$	100
66	150
99	200

Applying Intervals

- Estimate gas usage for a given dive
- Multiply depth-dependent 5 minute blocks to determine how much is needed or estimate how much has been used
- Pressure gauges are not ultra-accurate, reasonable rounding is expected

EXAMPLE A: Diver with the above intervals has been in 60 foot passage for 25 minutes. How much gas has been consumed?

25 minutes $/ 5$ minute intervals $=5$ intervals
$150 \times 5=750$
25 minutes is 5 intervals
150 is the interval for 66' (the closest to our target depth)
Diver has likely consumed around 700psi since they're a little shallower

EXAMPLE B: Same diver plans to spend 40 minutes at 40 feet. How much gas will be consumed?

40 minutes $/ 5$ minute intervals $=8$ intervals
$100 \times 8=800$
40 minutes is 8 intervals
100psi is the interval for 33 '
Diver can expect to need a bit more than 800psi. Call it ~ 900 psi.

Swim Speed / Distance

Sort of obvious
Multiply time by feet/minute

- 20fpm is barely moving
- 30fpm is pretty slow
- 40fpm is pretty average
- 50 fpm is pretty fast
- 60fpm is a likely-unsustainable sprint

EXAMPLE: Team has been swimming for 40 minutes at 30 fpm. How far into the cave are they?
$40 \times 30=1200$ feet

Recalculation of Thirds

- Allows for further exploration
- Retains donateable gas in case of OOG emergency
- Requires extreme situational awareness!

	Key
SP	Starting Pressure
UP	Usable Pressure
TP	Turn Pressure
MG	Minimum Gas

1: Team agrees enough gas exists to recalculate
2: Note exact location of cave and time required to exit
3: Multiply intervals to determine personal gas required
4: Double that figure to determine Minimum Gas required to exit in an OOG emergency
5: Subtract that as a Reserve Gas from current Starting Pressure
6: Calculate Usable Pressure (thirds) from the remainder
7: Each team member communicates their UP. Lowest UP is UP for the entire team.
8: Subtract new UP from current SP to determine new TP

EXAMPLE: During the return swim your team wants to explore a jump 15 minutes from the exit. You have 1600psi remaining in your backgas.

15 minutes swim would require 3 intervals. Let's say you have intervals of 100 psi. So 300 psi are required for your exit. But we need to plan for two.
$M G=300 \times 2$
$M G=600 p s i$
Current SP is 1600
Reserving MG of 600psi we can figure our Provisional Starting Pressure
$1600-600=1000$
We can calculate our new UP from this Provisional Pressure
900/3 = 300
$\mathrm{UP}=300 \mathrm{psi}$
At this point the team will communicate each member's UP Whomever has the lowest UP sets the UP for the entire team In this case it's our diver with 300psi

So we subtract our UP from our SP to determine our new TP
$1600-300=1300$ psi
TP = 1300psi

